Thermodynamic properties of minerals and fluids

K. Eremier, V.A. Bychinskii

Calculation of standard thermodynamic potentials of Cs-zeolites

Abstract. On the basis of thermodynamic properties of natural pollucite (Ogorodova et. al, 2003) the linear decomposition of the values of standard Gibbs energies and enthalpies of formation from the chemical elements have been obtained. Comparison of calculations with the literature data gives the estimation errors in the range of 0-6 %. The equation obtained for oxide increments can be used for assessments of the potential of zeolites in the Cs-Rb-Na-Al-Si-O-H system.

Keywords: Standard thermodynamic potentials, Cs-zeolites.

Table 1. The values of Gibbs energies (G) and enthalpies (H) of pollucite Cs_{0.77}Rb_{0.24}Na_{0.14}[Al_{0.91}Si_{2.06}O_{6}·0.34H_{2}O from consisting oxides increments

<table>
<thead>
<tr>
<th>y*, kJ/mole</th>
<th>Cs_{2}O</th>
<th>Rb_{2}O</th>
<th>Na_{2}O</th>
<th>Al_{2}O_{3}</th>
<th>SiO_{2}</th>
<th>H_{2}O</th>
</tr>
</thead>
<tbody>
<tr>
<td>-H</td>
<td>411.959</td>
<td>733.131</td>
<td>663.954</td>
<td>1785.908</td>
<td>936.399</td>
<td>364.581</td>
</tr>
<tr>
<td>-G</td>
<td>378.879</td>
<td>678.289</td>
<td>619.521</td>
<td>1695.342</td>
<td>884.811</td>
<td>312.978</td>
</tr>
</tbody>
</table>

Table 2. The standard enthalpies of formation from the elements Cs-zeolites

<table>
<thead>
<tr>
<th>Minerals</th>
<th>-H, kJ/mole</th>
<th>Calc.</th>
<th>Error, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollucite</td>
<td>3104.000</td>
<td>3104.000</td>
<td>0.00</td>
</tr>
<tr>
<td>Pollucite</td>
<td>3098.500</td>
<td>3098.922</td>
<td>-0.01</td>
</tr>
<tr>
<td>Pollucite</td>
<td>3083.400</td>
<td>2971.732</td>
<td>3.68</td>
</tr>
<tr>
<td>Pollucite</td>
<td>3090.000</td>
<td>3023.757</td>
<td>2.17</td>
</tr>
<tr>
<td>Rb-Natrolite</td>
<td>1151.860</td>
<td>1228.048</td>
<td>-6.40</td>
</tr>
<tr>
<td>Rb-Beta</td>
<td>912.630</td>
<td>956.372</td>
<td>-4.68</td>
</tr>
<tr>
<td>Cs-Beta</td>
<td>909.620</td>
<td>958.204</td>
<td>-5.20</td>
</tr>
</tbody>
</table>
Abstracts

Table 3. The standard Gibbs energies of Cs-zeolites

<table>
<thead>
<tr>
<th>Minerals</th>
<th>-G, kJ/mole</th>
<th>Calculated</th>
<th>Error, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollucite Cs${0.77}$Rb${0.04}$Na${0.14}$[Al${0.91}$Si$_{2.08}$O$_6$]·0.34H$_2$O (Ogorodova et al., 2003)</td>
<td>2921.000</td>
<td>2921.000</td>
<td>0.00</td>
</tr>
<tr>
<td>Pollucite Cs${0.65}$Na${0.18}$Rb${0.028}$Al${2.63}$Si${1.863}$O${12.363}$·0.19H$_2$O (See references from Ogorodova et al., 2003)</td>
<td>2921.600</td>
<td>2916.772</td>
<td>0.17</td>
</tr>
<tr>
<td>Pollucite (synth.) CsAl$_2$Si$_2$O$_6$ (See references from Ogorodova et al., 2003)</td>
<td>2917.000</td>
<td>2806.732</td>
<td>3.85</td>
</tr>
<tr>
<td>Pollucite Cs${0.84}$Na${0.11}$Al${0.88}$Si${2.1}$O$_6$·0.17H$_2$O (Ogorodova et al., 2003)</td>
<td>2911.000</td>
<td>2850.462</td>
<td>2.10</td>
</tr>
</tbody>
</table>

The work was supported by RFBR and Government of Zabaykalskiy kray (project № 14-05-98012 r_Siberia_a)

References:
Thermodynamic properties of minerals and fluids

Eremin O.V.1, Borzenko S.A.1, Epova E.S.1, Rusal O.S.1, Bychinskii V.A.2 Estimation of the Gibbs free energy for fluorocarbonates of light lanthanides

1) Institute of natural resources, ecology and cryology SB RAS, Chita.
2) Institute of geochemistry SB RAS, Irkutsk.
(yeroleg@yandex.ru)

Abstract. Based on experimental data (Gysi and Williams-Jones, 2015) the linear decomposition of the standard Gibbs energies of minerals bastnasite (Ce0.5La0.25Nd0.2Pr0.05CO3F) and parsite (CaCe0.95La0.6Nd0.33Pr0.1(CO3)2F2) have been obtained which can be used for calculations of free energies of these classes substances.

Keywords: Gibbs free energy, bastnasite, parsite.

Bastnasite - (Ce,La,Y)CO3F – is the main ore mineral of light lanthanides. In work (Gysi and Williams-Jones, 2015) the standard thermodynamic properties of bastnasite - Ce0.5La0.25Nd0.2Pr0.05CO3F(Bast) and parsite - CaCe0.95La0.6Nd0.33Pr0.1(CO3)2F2(Pari) have been determined. On the base of these data for reactions:

\[0.083\text{Ce}_2\text{O}_3+0.125\text{La}_2\text{O}_3+0.1\text{Nd}_2\text{O}_3+0.025\text{Pr}_2\text{O}_3+\text{CO}_2+0.333\text{CeF}_3 = \]
\[=\text{Ca}_0.95\text{La}_0.06\text{Nd}_0.33\text{Pr}_0.1(\text{CO}_3)_2\text{F}_2\quad(1) \]

The calculated \(y^* \) values can be used for estimations of the Gibbs free energies for fluorocarbonates of light lanthanides.

Results of calculations are presented in table 1 and figures 1,2.

The calculated \(y^* \) values can be used for estimations of the Gibbs free energies for fluorocarbonates of light lanthanides.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>(-G), kJ/mole</th>
<th>Calculated y* (1)</th>
<th>Calculated y* (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bastnasite [Ce0.5La0.25Nd0.2Pr0.05CO3F]</td>
<td>1709.700</td>
<td>1709.700</td>
<td>1724.597</td>
</tr>
<tr>
<td>Parsite [CaCe0.95La0.6Nd0.33Pr0.1(CO3)2F2]</td>
<td>4571.500</td>
<td>-</td>
<td>4571.500</td>
</tr>
<tr>
<td>CeO3</td>
<td>1706.202</td>
<td>2075.451</td>
<td>2040.625</td>
</tr>
<tr>
<td>La2O3</td>
<td>1705.980</td>
<td>2020.131</td>
<td>1953.243</td>
</tr>
<tr>
<td>Nd2O3</td>
<td>1720.649</td>
<td>2068.462</td>
<td>2033.130</td>
</tr>
<tr>
<td>Pr2O3</td>
<td>1721.041</td>
<td>2207.257</td>
<td>2157.931</td>
</tr>
<tr>
<td>CeF3</td>
<td>1700.411</td>
<td>1863.312</td>
<td>1867.325</td>
</tr>
<tr>
<td>CO2</td>
<td>394.384</td>
<td>401.097</td>
<td>430.685</td>
</tr>
<tr>
<td>CaO</td>
<td>604.048</td>
<td>-</td>
<td>695.802</td>
</tr>
</tbody>
</table>
Abstracts

The work was supported by RFBR and Government of Zabaykalskiy kray (project № 14-05-98012 r_Siberia_a)

Fig. 1. The bar diagramm of $y^*(1)$ for bastnasite.

Fig. 2. The bar diagramm of $y^*(2)$ for parisite.

References:

5. Reid R., Prausnitz J., and Sherwood T. (1977), The
Sokolova T.S., Danilov B.S. Additive approach to estimating of standard thermodynamic functions of charoite

Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences sokolovats@crust.irk.ru

Abstract. The values of standard thermodynamic functions, enthalpy of formation and entropy (ΔH_{298}^0 and S_{298}^0), are required data for thermodynamic analysis of charoite formation. The experimental studies of enthalpy and entropy in some cases is very difficult and time laborious issue, therefore it is needed to use alternative calculation methods. The main idea of this work is to calculate of standard values of enthalpy and entropy of charoite, which is one of minerals alkaline calcium silicate group. Analysis of chemical compositions of charoite in studies (Rogova et al., 1978; Kraeff et al., 1980; Nikishova et al., 1985; Konev et. al., 1996; Matesanz et al., 2008; Correcher et al., 2008; Wang et al., 2014; etc.) is allowed us to determine a range of Ca, Na, K, Ba and Si oxides as constant. The chemical compositions were recalculated to 120 (121±2) cations, according to general charoite chemical composition (Rozhdestvenskaya et al., 2011). The additive approach to calculating of standard enthalpy and entropy of silicates from oxides (Kutolin, 1964; Babushkin et al., 1972; Maltsev et al., 2012) is gave the following results $\Delta H_{298}^0 = -89550.8\pm1065.8$ kJmol$^{-1}$ and $\Delta S_{298}^0 = 5751.2\pm62.7$ Jmol$^{-1}$K$^{-1}$. Thus, we first estimated the values of standard thermodynamic functions of charoite, what can contribute in solving the problem of charoite genesis conditions in the future.

The work was supported by the Russian Foundations of Basic Research (project No 14-45-04108).

Fig. 1 Scheme of installation for selection of test of a gas phase experience
Abstracts

Condensate of steam was diluted 3%HNO₃ and analyzed by the ICP MS method. Results are presented in the table:

<table>
<thead>
<tr>
<th>№</th>
<th>T°C</th>
<th>Sn, ppb</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>330</td>
<td>1376</td>
</tr>
<tr>
<td>19</td>
<td>330</td>
<td>1648</td>
</tr>
<tr>
<td>21</td>
<td>350</td>
<td>4784</td>
</tr>
<tr>
<td>22</td>
<td>350</td>
<td>4008</td>
</tr>
<tr>
<td>23</td>
<td>350</td>
<td>3810</td>
</tr>
<tr>
<td>24</td>
<td>360</td>
<td>5001</td>
</tr>
<tr>
<td>25</td>
<td>360</td>
<td>5865</td>
</tr>
<tr>
<td>26</td>
<td>360</td>
<td>5906</td>
</tr>
</tbody>
</table>

and in the drawing, where points – an average from several experiences.

Authors express gratitude of Ya. V. Bychkova for carrying out ICP MS of the analysis, and also A. V. Zotova for valuable remarks on the equipment and a technique of carrying out an experiment.

Work is performed with financial support of RNF (grant No. 14-17-00366).

References:

Shornikov S. I. Thermodynamic properties of the CaO–MgO–SiO₂ melts

Vernadsky Institute of Geochemistry and Analytical Chemistry of RAS, Moscow

Abstract. Within the framework of the developed semi-empirical model, the calculations were made of thermodynamic properties of the CaO–MgO–SiO₂ melts in the temperature region 1600–2400 K. The calculated values of the oxide activities and the mixing energies of melts are compared with available experimental information.

Key words: thermodynamic properties of oxide melts, the CaO–MgO–SiO₂ system

Physico-chemical properties of the compounds of the CaO–MgO–SiO₂ system and their melts are of great interest to the geochemistry. In particular, several compounds of this system (forsterite, diopside and akermanite) are part of the Ca–Al–Inclusions (CAIs) in chondrites.

This investigation presents the calculation of thermodynamic properties of the CaO–MgO–SiO₂ melts at temperatures from 1600 to 2400 K within framework of the ideal associated solutions theory. The aim of the present study was to clarify the parameters used by semi-empirical model for calculation of oxide activities in the CaO–MgO–FeO–Al₂O₃–TiO₂–SiO₂ multicomponent melts in a wide range of compositions and temperatures. The model parameters, as earlier [Shornikov, 2008] were calculated from the experimental and theoretical data [Glushko et al., 1978–1982; Bale et al., 2009; Shornikov and Yakovlev, 2015].

The initial thermodynamic data considered 21 condensed phases (13 solid and 8 liquid) and 17 gas species, these components are listed in the Table 1. The same table 1 gives the calculated values of the Gibbs formation energies from elements (ΔG°) for the compounds and the vapor species over the CaO–MgO–SiO₂ system. They were used for the calculation of the equilibrium conditions in the system at a given composition and temperature. The required equation solution for the total Gibbs energy for the system studied was found by the widely used approach, namely the Gibbs energy minimization method.
The calculated values of the oxide activities \((a_i)\) in the \(\text{CaO}–\text{MgO}–\text{SiO}_2\) melts obtained in the present study (Fig. 1) are coincide approximately to the same results, which are the most widely cited in the literature [Rein and Chipman, 1965]. The observed differences are due to the indirect definition of the \(\text{CaO}\) and \(\text{MgO}\) activities by Rein and Chipman, used the Schuhmann’s metod [Schuhmann, 1955]. It evidenced by the course of the concentration dependences of the mixing energy in melts \((\Delta G^m)\) under consideration (Fig. 2). As can be seen from Fig. 2, the mixing energy in melts, obtained by Rein and Chipman, are not indicative of the minimum, corresponding to the diopside \(\text{CaMgSiO}_4\), and differ from the calculated values coincide with data obtained by the Knudsen mass-spectrometric effusion method [Shornikov et al., 1997] by on 4 kJ/mole approximately.

Table 1. The Gibbs energy of formation from elements of condensed phases and vapor species over the \(\text{CaO}–\text{MgO}–\text{SiO}_2\) system at 2000 K, calculated in present study

<table>
<thead>
<tr>
<th>Condensed phases</th>
<th>(\Delta G^\circ_{2000}), kJ/mole</th>
<th>Gas phase</th>
<th>(\Delta G^\circ_{2000}), kJ/mole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid phases</td>
<td>Liquid phases</td>
<td>Vapor species</td>
<td></td>
</tr>
<tr>
<td>(\text{CaO})</td>
<td>(-421.511)</td>
<td>(\text{CaO})</td>
<td>(-409.450)</td>
</tr>
<tr>
<td>(\text{CaSiO}_3)</td>
<td>(-1058.628)</td>
<td>(\text{CaSiO}_3)</td>
<td>(-1064.401)</td>
</tr>
<tr>
<td>(\text{Ca}_2\text{SiO}_4)</td>
<td>(-1531.242)</td>
<td>(\text{Ca}_2\text{SiO}_4)</td>
<td>(-1522.120)</td>
</tr>
<tr>
<td>(\text{Ca}_3\text{SiO}_5)</td>
<td>(-1945.934)</td>
<td>(\text{Ca}_3\text{SiO}_5)</td>
<td>(-1945.934)</td>
</tr>
<tr>
<td>(\text{Ca}_2\text{Si}_2\text{O}_7)</td>
<td>(-2577.486)</td>
<td>(\text{Ca}_2\text{Si}_2\text{O}_7)</td>
<td>(-2577.486)</td>
</tr>
<tr>
<td>(\text{MgO})</td>
<td>(-376.430)</td>
<td>(\text{MgO})</td>
<td>(-345.380)</td>
</tr>
<tr>
<td>(\text{MgSiO}_3)</td>
<td>(-956.936)</td>
<td>(\text{Si})</td>
<td>(167.228)</td>
</tr>
<tr>
<td>(\text{Mg}_2\text{SiO}_4)</td>
<td>(-1360.399)</td>
<td>(\text{Mg}_2\text{SiO}_4)</td>
<td>(-1351.811)</td>
</tr>
<tr>
<td>(\text{CaMgSiO}_4)</td>
<td>(-1461.894)</td>
<td>(\text{Si}_3)</td>
<td>(265.892)</td>
</tr>
<tr>
<td>(\text{CaMgSi}_2\text{O}_6)</td>
<td>(-2038.188)</td>
<td>(\text{CaMgSi}_2\text{O}_6)</td>
<td>(-2065.893)</td>
</tr>
<tr>
<td>(\text{Ca}_2\text{Mg}_2\text{Si}_2\text{O}_7)</td>
<td>(-2478.460)</td>
<td>(\text{Ca}_2\text{Mg}_2\text{Si}_2\text{O}_7)</td>
<td>(-2498.156)</td>
</tr>
<tr>
<td>(\text{Ca}_3\text{Mg}_3\text{Si}_4\text{O}_8)</td>
<td>(-2976.156)</td>
<td>(\text{Si}_2\text{O}_2)</td>
<td>(-550.520)</td>
</tr>
<tr>
<td>(\text{SiO}_2)</td>
<td>(-550.476)</td>
<td>(\text{SiO}_2)</td>
<td>(-550.520)</td>
</tr>
</tbody>
</table>

Fig. 1. The activity of \(\text{CaO}\) (1, 4), \(\text{MgO}\) (2, 5) and \(\text{SiO}_2\) (3, 6) in the \(2\text{MgO}·3\text{SiO}_2–\text{CaO}\) melts (a) and in the \(\text{CaO}·\text{MgO}–\text{SiO}_2\) melts (b) at 1873 K: 1–3 – obtained in the present study and 4–6 – [Rein and Chipman, 1965].
The present study was supported by RAS Presidium’s Program #7 (Experimental and theoretical studies of Solar system objects and star planetary systems. Transients in astrophysics).

References:

Abstract. A mass spectrometric Knudsen effusion method was used to investigate the MgAl₂O₄ spinel evaporation at 1850–2300 K. The oxide typical molecular ions as well as the MgAlO ion were identified in the gas phase over spinel. The oxide activities and the Gibbs energy of spinel formation from oxides were obtained. The enthalpy and entropy of spinel formation from oxides, equal to –12.02±1.14 kJ/mole and 5.03±0.56 J/(mole·K), correspondingly, and the enthalpy of melting equal to 55.81±4.62 kJ/mole are corresponding to literature information.

Key words: mass spectrometric Knudsen effusion method, thermodynamics of evaporation, spinel

Shornikov S.I. High-temperature thermodynamic properties of MgAl₂O₄ spinel

Vernadsky Institute of Geochemistry and Analytical Chemistry of RAS, Moscow
Thermodynamic properties of minerals and fluids

exceed 15 kJ/mole (on 1 mole of the compounds), the values of enthalpy and entropy of spinel formation has a considerable error. Thermochemical data on the value of the enthalpy of spinel melting are contradictory. The information on the evaporation processes of spinel are scarce [Rutman et al, 1969; Sasamoto et al., 1981] and it limited the values of partial vapor pressure of the gas phase dominant component (atomic of magnesium).

In the present study we have investigated the evaporation of a stoichiometric spinel from Knudsen effusion molybdenum cells, the gas phase composition over spinel was identified by mass spectrometric method in the temperature range 1850–2300 K. The ions, characteristic to the oxides of magnesium and aluminum, as well as the MgAlO complex gaseous oxide ion were detected in the mass spectra of vapor over spinel.

The established molecular composition of the gas phase over spinel allowed to make the assumption that the spinel evaporation occurs mainly by heterogeneous reactions, typical for the individual oxide’s vaporization. The MgAlO molecular form presented in minor amounts in the gas phase over spinel and indicated about the possible heterogeneous reaction:

$$[\text{MgAl}_2\text{O}_4] = (\text{MgAlO}) + (\text{Al}) + 3(\text{O}). \quad (1)$$

The partial pressures values of the vapor species over spinel (p_i) in the temperature range 1850–2090 K were determined by the Hertz-Knudsen equation and shown in the Fig. 1. There was a noticeable change of spinel composition at higher temperatures due to the preferential evaporation of the vapor species, belonging to the magnesium oxide.

The activity values of oxides in spinel were calculated by the Lewis equation:

$$a_i = p_i / p_i^* \quad (2)$$

(p_i and p_i^* – the partial pressures values of the vapor species over spinel and simple oxide, respectively). The activity values of oxides in spinel in the crystalline state at higher temperatures (2050–2300 K) were found using the data [Shornikov and Archakov, 2001] on the MgAl$_2$O$_4$–SiO$_2$ melts evaporation. The value of the Gibbs energy of spinel formation ΔG_T (MgAl$_2$O$_4$) was found by the relation:

$$\Delta G_T (\text{MgAl}_2\text{O}_4) = RT \sum x_i \ln a_i, \quad (3)$$

where x_i is the mole fraction of oxide ($\sum x_i = 1$). The values of enthalpy ΔH_T (MgAl$_2$O$_4$) and entropy ΔS_T (MgAl$_2$O$_4$) of spinel formation have been calculated using the least squares method from the $\Delta G_T (\text{MgAl}_2\text{O}_4)$ temperature dependences in the approximation of constancy of these values in the considered temperature interval and equal to -12.02 ± 1.14 kJ/mole and 5.03 ± 0.65 J/(mole·K), respectively, and are consistent with available data.

Thermodynamic information on the oxide activities in the MgAl$_2$O$_4$–SiO$_2$ melts [Shornikov and Archakov, 2001] allowed also to calculate the Gibbs energy values of spinel in the liquid state and find of enthalpy and entropy of spinel formation, equal to 43.79 ± 4.84 kJ/mole and 28.09 ± 1.64 J/(mole·K), respectively, and calculate the enthalpy of spinel melting, equal to 55.81 ± 4.62 kJ/mole at the temperature of 2420 ± 25 K.

The values of ΔH_T (MgAl$_2$O$_4$) and ΔS_T (MgAl$_2$O$_4$) determined in the present study are correlated with results of the Knudsen mass spectrometric effusion method [Rutman et al, 1969; Sasamoto et al., 1981], performed at lower temperatures. Information obtained in studies of heterogeneous equilibria involving spinel [Kalyanaram and Bell, 1961; Rein and Chipman, 1965; Chamberlin et al., 1995; Fujii et al., 2000] does not contradict the results of the present study, however they have a significant error. The values characterizing the spinel melting found in the present work are in good agreement with the experimental data, obtained by Richet [Richet, 1993].

Thus, the spinel evaporation from the molybdenum cell was studied by the Knudsen mass spectrometric effusion method studied at 1850–2300 K. The molecular components typical for simple oxides forming the spinel and also in a small number of the MgAlO complex gaseous oxide were identified in the gas phase over spinel. The partial pressures values of vapor species over spinel were determined at the first time. The spinel thermodynamic data related to their crystalline and liquid state were determined too.
Mironenko M.V., Cherkasova E.V.
Thermodynamic modeling behavior of bromide in processes of evaporation and freezing of sea water.

V.I. Vernadsky Institute RAS. (mironenko@geokhi.ru)

Abstract. The work is an extension of FRZCHEM model [Marion et al., 2010]. Entering Br⁻ into sodium, potassium, calcium, and magnesium chlorides has been described in terms of ideal binary solid solutions “chloride-bromide”. Activity products of pure bromides, as functions of temperature, were calculated from reference experimental data on their solubilities and from values of water activities and ion activity coefficients at saturated concentrations for various temperatures. The last values were calculated using temperature-dependent Pitzer interaction parameters, estimated by Marion et al., 2009. The algorithm of calculating chemical equilibria was significantly modified. We modeled bromide behavior during fractional evaporation at 25°C and in process of fractional freezing of sea water.

Keywords: bromide, seawater, Pitzer equations, solid solutions, brines, chemical equilibria.

It is known that during evaporation of seawater a ratio Br/Cl⁻ increases in the remaining brine [Valiashko et al., 1966]. Under natural conditions bromine does not form own solids, but isomorphically replaces chlorine in chlorides. Distribution of bromine between a salt and aqueous solution usually is described in terms of empiric coefficients of fractionating. It has been experimentally shown [Siemann and Schramm, 2002; 2000] that at low aqueous Br⁻ contents (less than 5·10⁻⁶ mg/g) coefficients of fractionating among chlorides and solution increase as aqueous bromine concentration decreases, and they are approximately constant at higher concentrations. Bromine contents in seawater are much higher. This gives reasons to use a model of ideal solid solution for entering seawater bromide into solid chlorides.

We took activity products of chlorides from FREZCHEM database [Marion et al., 2010]. To calculate activity products of bromides at various temperatures we used data from reference books on solubility [Reference books on solubility of salt systems, 1953; Reference books on solubility, 1961]: NaBr, NaBr₂H₂O (Seidell, 1940); KBr (Getman, 1935); MgBr₂·6H₂O, MgBr₂·8H₂O (Getman, 1935); CaBr₂·6H₂O (Kremers, 1858; Rakowsky, Garrett, 1954; Etard, 1894). There are few data for Br⁻-carnallite K₂MgBr₃·6H₂O for 25°C only (Boekke, 1908; Nikolaev, 1935). Activity coefficients of Na⁺, K⁺, Mg²⁺, Ca²⁺, and Br⁻, as well as water activities were calculated on the basis of Pitzer binary (plus ternary K-Mg-Br for Br-carnallite) interaction parameters, estimated in [Marion et al., 2009].

Calculated parameters of dependencies of activity products of bromides on temperature \(\Delta G/RT = -\ln(K) = a_0 + a_1 T + a_2 T^2 + a_3 T^3 + a_4 T^4 + a_5 \ln(T) \) are shown in the table.

The obtained constants together with Pitzer interaction parameters from [Marion et al., 2009] make possible to reproduce adequately experimental diagrams of state of binary systems bromide-water, particularly NaBr·H₂O (Fig.1).
Table. Parameters of temperature dependencies of activity products of bromides, calculated in this study

<table>
<thead>
<tr>
<th>Salt</th>
<th>(a_0)</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(a_4)</th>
<th>(a_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KBr</td>
<td>18280.60392</td>
<td>46.32501</td>
<td>-0.080388</td>
<td>6.26E-05</td>
<td>-44547.31116</td>
<td>-4643.10026</td>
</tr>
<tr>
<td>NaBr</td>
<td>18.82133</td>
<td>-0.058432</td>
<td>3.44E-06</td>
<td>5.66E-08</td>
<td>-3051.432</td>
<td>1.615122</td>
</tr>
<tr>
<td>NaBr*2H₂O</td>
<td>220530.535</td>
<td>242.10902</td>
<td>-0.283702</td>
<td>0.000165848</td>
<td>-324346.366</td>
<td>-45810.8338</td>
</tr>
<tr>
<td>CaBr₂*6H₂O</td>
<td>38152.29528</td>
<td>51.07134</td>
<td>-0.0700075</td>
<td>4.76E-05</td>
<td>-490774.0595</td>
<td>-8209.25765</td>
</tr>
<tr>
<td>MgBr₂*6H₂O</td>
<td>-15376.23921</td>
<td>-22.218449</td>
<td>0.03038172</td>
<td>-0.00001998</td>
<td>170461.3439</td>
<td>3379.450597</td>
</tr>
<tr>
<td>MgBr₂*8H₂O</td>
<td>-1215.4775</td>
<td>14.9694</td>
<td>-0.0622</td>
<td>8.6549E-5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>KMgBr₂*6H₂O</td>
<td>-6.22126</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 1. Experimental (dots) and calculated (lines) diagram of state of the system NaBr-H₂O

Fig. 2. Calculated behavior of bromine during fractional evaporation of model seawater at 25°C.
We calculated bromine behavior during fractional seawater evaporation (Fig. 2) and seawater freezing (Fig. 3) in the H₂O-Na-K-Ca-Mg-Cl-SO₄-Br system. Temperature dependencies of Pitzer binary and ternary interaction parameters were taken from [Marion et al., 2009].

Thus we extended FREZCHEM model for bromine.

Acknowledgments. Authors thank V. B. Polyakov for his kind help in approximation of temperature dependencies of solubility constants. A study was partially supported by RFBR (grant 14-05-00128).

References:

Abstract. This paper presents recent data on LiGaTe\(_2\) crystal growth. Specifically, the latest DTA data of the synthesized charge and heat capacity anomalous temperature dependence are shown. The set of phases in addition to LGT, both at the sample heating and cooling steps, is observed. Also, the newest 4-zone furnace construction based on the numerical modeling is presented.

Keywords: bulk crystal growth, nonlinear optics, Bridgman-Stockbarger technique, heat capacity, DTA, numerical modeling.

LiGaTe\(_2\) (LGT) is a promising converter of laser radiation in the mid-IR range. The crystal has a wide transmission area (T = 0.52 - 21 \(\mu\)m), high nonlinear susceptibility (\(d_{36} = 43\) pm/V) in combination with a high birefringence coefficient (\(n = 0.09\)) [Isaenko L. et al, 2003; Yelisseyev A. et al., 2015]. During the investigation, we found the optimum charge composition for stoichiometric crystal growth and the charge's melting point was determined by DTA. Synthesized charge DTA data shown in Figure 1 indicate the primarily LiGaTe\(_2\) (\(T_{melting} = 945\) K) phase presence during the heating step. The cooling from the melt step occurs 945 K peak, which corresponds to the LiGaTe\(_2\) melting, and 739 K peak corresponding to the melting point of the Te\(^+\), LiTe\(_3\), and Ga\(_2\)Te\(_3\) phases. We have also observed lithium carbide (Li\(_2\)C\(_2\)) phase with a melting point of 845 K.

The data confirm the Li\(_2\)Te excess over the stoichiometric composition choice validity. LGT crystals up to 8 mm were obtained by the Bridgman-Stockbarger technique. We used the furnace with a controlled heat exchanger. The dependence of the heat capacity of the LGT crystal temperature (1) was examined.

\[
C_v(T) = 100.01 + 0.0219 \cdot T - 191210 \cdot T^{-2} \quad (1)
\]

Heat capacity specific temperature variations are shown in Figure 2 and demonstrate the absence of phase transitions in this temperature range. The features are that all the experimental points and the curve, respectively, are located above the 3R per average gm-atom classical limit (for LGT it is 100 J/mol·K).

TGA data, shown in Figure 3, have presented no change in LGT sample weight up to 673 K.

It is known that for high-quality crystal growth it is important to provide either flat or convex crystallization front with respect to the growing crystal [Wilke K.Th., 1973]. The concave front increases the crystal doubling probability, as well as stimulates the generation of dislocations due to mechanical stresses occurring in the crystal. Thermoelastic stresses, which are the source of shear dislocations, occur during the crystal growth due to the non-constant inside temperature gradient [Indenbom V.L., 1957; Dash W.C., 1957]. Single crystal quality with a small plastic deformation zone amount is particularly influenced by thermal stress.

To optimize the LGT single crystal growth process, STR Group Crystal Growth Simulation (CGSim) was applied. During the mathematical modeling process, the thermal unit geometry has been designed, as well as the temperature profile configuration inside it has been selected. It is assumed that this will provide the single crystal growth by the slightly convex crystallization front with respect to the crystal as illustrated in Figure 4.
On the developed configuration basis the four-zone furnace for the Bridgman-Stockbarger crystal growth technique with controlled heat exchanger was created, low radial and axial constant temperature gradients were obtained (Figure 5). The apparatus also allows to check the LGT crystal growth possibility in extremely low axial and radial temperature gradients.

References:

Korobova E.M.1, Kolmykova L.I.1, Gromyak I.N.1, Korsakova N.V.1, Makarova E.M.2, Golubkina N.A.3 Seasonal dynamics of iodine and selenium in natural water of different geochemical origin.

1 V.I. Vernadsky Institute RAS, Moscow (korobova@geokhi.ru) 2 Geocentre “Bryansk”, Bryansk 3 VNIISSOK, Moscow

Abstract. Seasonal dynamics of iodine and selenium concentration has been studied in natural waters
Thermodynamic properties of minerals and fluids

originating from various water-bearing complexes and horizons typical for Bryansk region (Russia). Obtained data proved a considerable seasonal variation in I and Se content ranging from 3.7 to 8.1 µg/l and 0.04-0.4 µg/l respectively. Variation was related to physico-chemical water parameters, such as pH, Eh and fluctuations in concentration of dissolved organic matter. The widest seasonal variation of the studied elements was observed in surface and well waters. Iodine maximum level was found in these waters in autumn (8.1 µg/l). Selenium content was higher in surface waters during summer-autumn period (0.06-0.3 µg/l) as compared to spring (0.04-0.05 µg/l). In drinking water from centralized supply pipeline low concentration of both elements was also registered in spring (3.7-4.3 µg/l (I) and 0.04-0.08 µg/l (Se)). Migration of iodine throughout the year occurs in fraction usually treated as dissolved (<0.45 µm) and the proportion of this fraction in autumn can reach its maximum equal to 84%.

Keywords: iodine, selenium, natural water, seasonal variation, Bryansk region

A large part of the territory of Russia belongs to biogeochemical provinces with a low content of iodine in the environment [Kovalsky V.V., 1974]. Insufficient intake of this element in the body leads to disruption of metabolic processes and formation of endemic diseases among the animals and humans [Fuge R., 1989]. Deficiency of other essential elements such as selenium may also have an influence on the occurrence of this kind of diseases [Rosen V. B., 1994].

Despite the accepted minor contribution of drinking water to providing living organisms with micronutrients [Fuge R., 2005], there are several regional studies which witness clear relationship between the amount of iodine in natural drinking waters and the occurrence of cases of iodine deficiency diseases among local population [Balasuriya S. et al., 1992; Salikhov Sh. K. et al., 2014.]

The Bryansk region belonging to non-chernozem zone is a clear example of areas with severe iodine deficiency in domestic animals due low I content in soils and food chains [Kovalsky V.V., 1974]. Iodine deficiency was registered among population and needed addition of I to diets [Dedov I.I. et al., 2006]. On the other hand, a considerable European part of this region has been affected by the Chernobyl accident (1986), and, as a result, it has been contaminated by radioactive isotopes including radioiodine. Under the condition of stable iodine deficiency radioactive iodine isotopes could have been accumulated by the I target organ, namely thyroid gland, more actively. The studies conducted after the accident proved contribution of iodine deficiency in humans to frequency of thyroid cancer cases in the contaminated zone [Shakhtarin V.V. et al., 2003]. Basing on the fact that rural diet is formed of local products and that vegetables contain ca 80% of water it could be suggested that contribution of water to local diet may reach 20% and it is worth to study peculiarities of I and Se migration of natural water in rural settlements contamination by radioiodine.

Our earlier studies of 2007-2013 showed wide iodine variation in natural waters of the region (0.74 - 41.19 µg/l) while surface and ground water samples were noted for the highest content of this element (8.4 µg/l, n=46 and 6.61 µg/l, n=52 respectively). Drinking water of centralized supply contained less iodine (6.39 µg/l, n=18). Similar character of distribution was observed for selenium. Its maximum level was detected in groundwater (0.53 µg/l, n=30) and water from centralized water supply (0.32 µg/l on the average, n=11). According to studies of water samples collected in previous years the levels of the trace elements depended on the overall chemical composition of the water (concentration of calcium, magnesium, sodium and potassium) and was related to salinity and Eh-ph parameters [Korobova E.M. et al., 2014 Kolmykova L.I., et al., 2016].

The aim of this study was to investigate seasonal dynamics of iodine and selenium concentration in natural waters fed by different water-bearing rocks resting at different depths.

The study was conducted in April-May, July and October of 2014-2015 at 14 monitoring points characterizing water sources connected to the uppermost layer (river and dug wells), the waters from drilled wells (ca 10-20 m deep) and centralized artesian bore holes draining geological strata down to 200 m. The highest content of iodine in surface and groundwater was observed in October (Me= 8.07 µg/l, n=3 in dug wells water and 5.12, n=5 in river and lake, average value for two seasons). A relatively high I concentration can be attributed to higher water salinity (Me=0.9 g/l), higher content of organic matter at the end of the growing season and more active leaching of iodine from soils sediments due to precipitation (Fig.1). Significant variations of iodine are observed for water from dug wells (5.10-8.07 µg/l); the water from drilled wells were characterized by the narrower range of its concentration (4.31-5.64 µg/l), the maximum being reached in July. Seasonal dynamics of Se content in natural waters was also quite obvious. The greatest seasonal range of Se values was found in dug well water (0.143-0.350 µg/l) where maximum was found in spring (Fig.2). In drilled and surface waters Se concentration varied in a smaller range, reaching maximum July (Me=0.067, n=6 for drilled wells and 0.056 µg/l, n=5 for rivers and lakes).

Analysis of the chemical composition of the filtrates obtained by passing the original water
sample through a semipermeable membrane of cellulose acetate with pore size of 0.45 µm, showed a significant predominance of iodine in the soluble fraction, regardless of the season of the year (from 75% to 84%). As expected, the highest fraction of dissolved iodine was observed in autumn (84%) that corresponds to the total iodine maximum found in October (8.1 µg/l).

Therefore the minimum iodine uptake with water by organisms occurs in spring period (April-May) that may be an additional risk factor in case of an accidental release of radioactive iodine in this season of the year.

Fig. 1. The concentration of iodine (µg/l) in natural waters from different sources within a few seasons

Fig. 2. The concentration of selenium (µg/l) in natural waters from different sources within a few seasons

The work was supported the Russian Foundation for Basic Research (grant 13-05-00823)

References:

Osadchii Valentin O. ab An experimental study of the solubility of Bi2O3 and Sb2O3 in H2O vapor

a Faculty of Geology, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
b Institute of Experimental Mineralogy RAS, Chernogolovka, Moscow District, 142432, Russia
E-mail: v.osadchii@iem.ac.ru

Keywords: bismuth; antimony; water vapour; solubility;
Thermodynamic properties of minerals and fluids

Introduction

Bismuth and antimony are trace elements and their concentrations in the earth’s crust are usually less than 1 ppm. Nevertheless they are easily mobilized by hydrothermal fluid and can reach concentrations up to 100 ppm [1, 2]. In geological processes geochemistry of Sb is closely related to such elements as Ag, Ag and PGE, while Bi is known as a ‘pathfinder’ element for Au and can scavenge significant amounts of gold from host rocks [3]. Unfortunately there is a lack of the thermodynamic data for these elements which limits our understanding of their role in hydrothermal processes. Thus, since the solubility of Bi$_2$O$_3$ and Sb$_2$O$_3$ in dense water vapor is still unknown, the aim of these study was to measure the solubility of Sb$_2$O$_3$ and Bi$_2$O$_3$ in the water vapor in the systems Sb$_2$O$_3$-Bi$_2$O$_3$-H$_2$O at 330–360°C and saturated water pressure.

Materials

In our experiments we used distilled deionised water; crystalline bismuth oxide Bi$_2$O$_3$ (bismite) and crystalline antimony oxide (senarmontite) produced by Sigma-Aldrich.

Experimental and analytical techniques. Experiments were carried out in Ti-based (VT8) autoclave (90 cm3) with an inner ampoule (6 cm3) for in situ sampling of vapor phase. This technique is described in details elsewhere [4, 5]. The pressure during the runs was measured with a D100 strain gauge calibrated against a standard piston gauge. The autoclave temperature was monitored by the K-type thermocouple. The uncertainties in the pressure and temperature measurements are ±0.3 MPa and 1 K, respectively. The amount of Bi$_2$O$_3$ and Sb$_2$O$_3$ was at least two orders higher than its solubility in water at the temperature of experiment.

After heating for 2-3 days (which was enough for system to equilibrate) the inner capsule was opened for 5 minutes and then closed, the autoclave was removed from the oven and quenched in cold water. After quenching, the capsule containing condensed vapor was rinsed 8 times with a well-known quantity 3M HNO$_3$ solution. These wash solutions were collected and then analysed separately by the ICP method.

Results

The discrepancies between the measured temperature and pressure and the water saturation curve are within instrumental accuracy. The obtained solubility of Bi and Sb in vapor was used to calculate the partition between dense water solution [3, 6] and coexisting vapor. Results are presented in Fig. 1.

The research presented in this paper was funded by RSF (grant №14-17-00366 to N. Akinfiev). I am grateful to Ya. V. Bychkova for conducting the ICP-MS analysis and A.V. Zotov for his comments on the experimental part of this study.

Fig. 1. The solubility of Bi$_2$O$_3$ and Sb$_2$O$_3$ in water vapor.

References:

5. Akinfiev NN, Zotov A V. (2016) Solubility of chlorargyrite (AgCl(cr.-/l.)) in water: New experimental data and a predictive model valid for a wide range of temperatures (273–873K) and water densities (0.01–1g·cm$^{-3}$). Geochim Cosmochim Acta 178:178–194. doi: 10.1016/j.gca.2016.01.027

Zakirova, Ildar V., Suvorova Valeria A.*, Osadchii, Valentin O. An experimental study of the solubility of tin in H$_2$O vapor

* Institute of Experimental Mineralogy RAS, Chernogolovka, Moscow District, 142432, Russia
Abstracts

Introduction

The behavior of tin in hydrothermal geological processes is primarily controlled by the solubility of cassiterite [1]. In chlorine-free environment tin is usually present in the form of either Sn(OH)2 or Sn(OH)4 in both aqueous solutions and water vapor. The thermodynamic parameters of the former are well-studied [2], while the properties of the latter are still unknown. For this reason we conducted experimental studies of cassiterite solubility in water vapor in the system SnO2-H2O at 330-360°C and saturated water pressure.

Materials

In our experiments we used distilled deionised water and crystalline tin oxide SnO2 produced by Sigma-Aldrich.

Experimental and analytical techniques. Experiments were carried out in Ti-based (VT8) autoclave (120 cm^3) with an inner ampoule (19.2 cm^3) for in situ sampling of vapor phase. This technique is described in details elsewhere [3, 4]. The pressure during the runs was measured with a D100 strain gauge calibrated against a standard piston gauge. The autoclave temperature was monitored by the S-type thermocouple. The uncertainties in the pressure and temperature measurements are ±0.3MPa and 2K, respectively. The amount of SnO2 was at least two orders higher than its solubility in water at the temperature of experiment.

After heating for 2-3 days (which was enough for system to equilibrate) the inner capsule was opened for 5 minutes and then closed, the autoclave was removed from the oven and quenched in cold water. After quenching, the capsule containing condensed vapor was rinsed 8 times with a well-known quantity 3M HNO3 solution. These wash solutions were collected and then analysed separately by the ICP method.

Table 1. The solubility of SnO2 in saturated water vapor

<table>
<thead>
<tr>
<th>№</th>
<th>T, °C</th>
<th>Sn, ppb</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>330</td>
<td>2356</td>
</tr>
<tr>
<td>19</td>
<td>330</td>
<td>3204</td>
</tr>
<tr>
<td>21</td>
<td>350</td>
<td>4785</td>
</tr>
<tr>
<td>22</td>
<td>350</td>
<td>4008</td>
</tr>
<tr>
<td>23</td>
<td>350</td>
<td>3811</td>
</tr>
<tr>
<td>24</td>
<td>360</td>
<td>5001</td>
</tr>
<tr>
<td>25</td>
<td>360</td>
<td>5913</td>
</tr>
<tr>
<td>26</td>
<td>360</td>
<td>5906</td>
</tr>
</tbody>
</table>

Results

The discrepancies between the measured temperature and pressure and the water saturation curve are within instrumental accuracy. The measured solubility of cassiterite is shown at table 1 and figure 1 and at least one order higher than its solubility in aqueous water solution measured by Sorokin and Dadze [5]. Thus, the solubility of SnO2 in water needs to be re-examined.

Keywords: tin; water vapour; solubility; cassiterite;

References:

4. Akinfiev NN, Zotov AV. (2016) Solubility of chlorargyrite (AgCl(cr./l.)) in water: New experimental data and a predictive model valid for a wide range of temperatures (273–873K) and water densities (0.01–1g·cm−3). Geochim Cosmochim Acta 178:178–194. doi: 10.1016/j.gca.2016.01.027

Polotnyanko N.A.1, Tyurin A.V.², Kristavchuk A.V.³, Charieev D.A.³, Gavrichev

Institute of Experimental Mineralogy
Thermodynamic properties of minerals and fluids

K.S.² Heat capacity and thermodynamic properties of palladium sulfides

1-Dubna University; 2- IGIC RAS; 3- IEM RAS polot.nat@gmail.com

The present work is a continuation of complex research focused on thermodynamic properties of the inorganic compounds containing palladium, in particular, included in S-Pd system. To date, literature data related to above-mentioned system is severely lacking.

Palladium forms several sulfides. Among these sulfides there are such minerals as vysotskit PdS and vasilit Pd₈S₇. Synthetic analogs of natural vysotskit and vasilit were obtained by solid-state synthesis. Samples were characterized by means of X-ray analysis.

Calorimetric measurements of heat capacity of palladium sulfides in a wide temperature range are given. Standard thermodynamic functions for both phases were calculated.

UDC 550.424.6

Aleksandrova E.V. Modeling of colloidal particles sorption on country rocks.

IGEM RAS, Moscow (ligasmy@gmail.com).

Abstract. Colloidal form - is the most dangerous form of radionuclides migration in underground environment. According to traditional models, radiocolloid sorption is considered as initial deposition on the free surface of enclosing rocks. As an alternative model has been proposed that takes into account the presence previously adsorbed non-radioactive colloid particles on the surface of filtration channels. Calculations on the basis of both models have shown that the intensity of colloidal particles precipitation depends on the number K_t which characterizes the ratio of groundwater velocity to desorption rate of colloidal particles.

Key words: radionuclides, groundwater, radiocolloid, deposition.

The main way of radionuclide migration in the underground environment in case of leakage from the territory of the storage of radioactive waste is the transfer by groundwater. Speed of radionuclide migration depends on the form of radionuclide transport in the underground environment. It was found that the most mobile form is a colloidal form of transport (Penrose et al., 1990; Kersting et al., 1999; Airey P.L., 1986; Short S.A., Lowson R.T., 1998).

Methods of mathematical modeling are used to assess the rate of radionuclide migration in colloidal form. Existing models of radionuclide transport in the underground environment take into account only radionuclide deposition on the free surface of the enclosing rocks. In this case radiocolloids (radionuclides are carried in colloidal form) occupy all adsorption space when passing front of radioactive contamination. As a result of decreased speed of radioactive contamination in the underground environment (Model I).

In practice radiocolloid deposition is a substitution of previously deposited particles - non-radioactive particles of natural origin (Model II). Of particular interest is the analysis of calculation results is made by using the Model I and Model II. Two options of radioactive contamination spread in underground environment are possible:

1. The groundwater flow rate is much higher than the rate of desorption of non-radioactive colloid particles from the surface of filtration channels. This condition is met for small values of K_t ($K_t = 0.1$). In this case, the distribution of dimensionless radiocolloid concentration over the entire length of the contamination front can be represented in the form of curves are shown in Fig. 1,2.

Fig. 1. Distribution of dimensionless radiocolloid concentration in the groundwater along the length of the rock at $\varphi = 0.2$ (φ - the dimensionless time; $K_t=0.1$)

Fig. 2. Distribution of dimensionless radiocolloid concentration in the groundwater along the length of the rock at $\varphi = 1$ (φ - the dimensionless time; $K_t=0.1$)
Abstracts

Fig. 3. Distribution of dimensionless radiocolloid concentration in the groundwater along the length of the rock at $\vartheta = 0.2$ (ϑ - the dimensionless time; K_t=10)

Fig. 4. Distribution of dimensionless radiocolloid concentration in the groundwater along the length of the rock at $\vartheta = 1$ (ϑ - the dimensionless time; K_t=10)

Fig. 1 – 4: red curves show the results of calculations made on the basis of the Model II, purple curves - Model I.

The calculations show that for small values of K_L in the case of Model II front of radioactive contamination spreads much faster than in the case of using of Model I.

2. The rate of groundwater flow is much smaller than desorption rate of previously precipitated colloid particles of natural origin. This condition is met for large values of K_L ($K_L = 10$). Curves presented in Fig. 3.4, show that in this case the differences in results on the basis of Models I and II are minimal.

New model has been proposed. This model takes into account the presence of previously adsorbed non-radioactive colloid particles on the surface of filtration channels. Conducted research have shown the relevance of the proposed model in the calculation of radioactive contamination spread in underground environment.

References:

Bublikova T.M., Balitsky V.S. Experimental Determination of the Heat Capacity of Basic Copper Carbonates (Malachite and Azurite)

IEM RAS, Chernogolovka (tmb@iem.ac.ru, balvlad@iem.ac.ru)

Abstract. The experimentally determined heat capacity of basic copper carbonates: natural malachite $\text{CuCO}_3 \cdot \text{Cu(OH)}_2$ and azurite $2\text{CuCO}_3 \cdot \text{Cu(OH)}_2$ and malachite synthesized in IEM RAS. The obtained data were used to calculate the thermodynamic functions of these minerals. Experimental results and theoretical calculations were used for the solubility diagrams in the system copper compounds $\text{CuO}-\text{CO}_2\cdot \text{H}_2\text{O}-\text{NH}_3$ at a different temperature and ammonia concentration.

Keywords: malachite, azurite, copper carbonate, heat capacity

Phase relations in the system $\text{CuO}-\text{CO}_2\cdot \text{H}_2\text{O}-\text{NH}_3$ were studied to determine the stability of the fields and the conditions of crystallization of malachite and azurite in copper-carbonate systems. We calculate and build diagrams of solubility of copper compounds at temperatures up to 100°C and a pressure of 0.1 MPa for various ammonia concentrations using some data in the literature.

In the literature, there are estimates of the heat capacity of malachite and azurite [Helgeson et al., 1978], as well as experimental data on the nature of basic copper carbonate [Kiseleva et al., 1992]. For the most accurate and concerted thermodynamic characteristics we measured the heat capacity of malachite synthesized in IEM RAS [Balitsky V.S., Bublikova T.M. et al., 1987] and natural samples of malachite and azurite.

Dependencies of the heat capacity on the temperature, obtained by us experimentally, were used to calculate the thermodynamic functions of
Thermodynamic properties of minerals and fluids

Heat capacity measurement was conducted with a differential scanning calorimeter DSC-2 «Perkin-Elmer» in an atmosphere of pure argon at a heating rate of 20 K/min, using the comparison method. To reduce the thermal drift calorimeter held for one hour at a temperature of 1000 K. The samples synthetic sapphire with different masses were used as reference of heat capacity.

The output signal of the calorimeter was entered into the computer memory via an analog-to-digital converter. After baseline correction form on these calculation data held in the sample heat capacity versus temperature. Error determination of the heat capacity does not exceed 2%, and the reproducibility was better than 5%.

Measurements were carried out in two stages: at 260 - 340 K and 360 - 500 K. The samples: natural malachite (mine Chokpak, Kazakhstan), azurite (copper-sulphide deposits in the Urals, a sample of the Mineralogical Museum VNIISIMS) and synthetic malachite, resulting in a crystallizer recirculating type IEM RAS. The measured values of \(C_p^o \) accepted as the phase with perfect stoichiometry due to the lack of satisfactory data on the composition of samples of azurite.

Temperature dependence of the heat capacity of natural malachite and azurite and malachite synthetic shown in Fig. 1 and 2.

Dependence of the heat capacity - temperature (298.15 - 500 K; J/mol K): were obtained by treating the measurements by method of least squares:

- natural malachite:
 \[C_p^o = 88.77 + 254.59 \cdot 10^{-3} T - 9.27 \cdot 10^5 \cdot T^{-2} \]

- synthetic malachite:
 \[C_p^o = 66.26 + 331.80 \cdot 10^{-3} T - 3.02 \cdot 10^5 \cdot T^{-2} \]

- natural azurite:
 \[C_p^o = 102.70 + 451.84 \cdot 10^{-3} T - 7.30 \cdot 10^5 \cdot T^{-2} \]

The calorimetric data indicate that synthetic malachite heat capacity on average 4% higher than the heat capacity of the natural malachite. The reasons for this difference may be: lower crystallinity the synthetic sample, a higher content of volatile components, as well impurities trapped into the sample during synthesis.

Fig. 1, 2 also shows the dependence of the heat capacity of the temperature by H. Helgeson [Helgeson H.C. et al., 1978]. He calculated the equation of the temperature dependence of malachite and azurite, based by his method, called "structural algorithm."

It should be noted a good agreement between the experimental and estimated values: the maximum difference of 7% noted for malachite at 260 K and 10% for azurite at 260 K.

For the calculation of the thermodynamic functions of malachite and azurite at high temperature our experimental \(C_p^o \) equations were used.

The standard enthalpies of formation of malachite (-1058.57 kJ·mol\(^{-1}\)) and azurite (-1663.20 kJ·mol\(^{-1}\)) calculated on the basis of our experimental data show good agreement with the values \(\Delta H^\circ_{298.15} \) for malachite and azurite in [Preis, Gamsjäger, 2002] devoted to detailed review and analysis of thermodynamic data for the basic copper carbonates.

References: